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Charged kaon condensation in high density quark matter
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Abstract

We show that at asymptotically high densities the “color-flavor-locked+ neutral kaon condensate” phase of QCD develops a
charged kaon condensate through the Coleman–Weinberg mechanism. At densities achievable in neutron stars a charged kaon
condensate forms only for some (natural) values of the low energy constants describing the low-lying excitations of the ground
state. 2002 Published by Elsevier Science B.V.
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It was realized a long time ago [1–3] that the attrac-
tion between two quarks close to the Fermi surface in
high density strongly interacting matter leads to the
formation of Cooper pairs of quarks and the sponta-
neous breaking of color symmetry. This phenomenon
was more recently studied using Nambu–Jona-Lasinio
models and renormalization group methods [4–7], in-
stanton models [8] and, at asymptotically high densi-
ties where a weak coupling expansion is valid, per-
turbative QCD [9–11]. The main lessons learned in
these studies were that (i) the gap can be large, up
to 100 MeV, (ii) in the case of three-flavors of quarks
with the same mass the ground state is the so-called
color-flavor-locked (CFL) state, and chiral symme-
try remains broken at arbitrarily high densities and
(iii) the low-lying excitations carry the quantum num-
bers of the pseudo-scalar octet familiar from the zero
density case (plus two other scalars related to the spon-
taneous breaking of baryon number and axial charge)
and (iv) a form of electromagnetism survives: a com-
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bination of the photon and the eight gluon is not “Hig-
gsed” and remains massless in the CFL phase. The
equation of state is left nearly unchanged by the pair-
ing. A number of electromagnetic and transport prop-
erties of quark matter are, however, sensitively depen-
dent on what phase the system finds itself and what the
low energy excitation are. This dependence provides a
unique opportunity to study quark matter in the inte-
rior of neutron stars (or rule out its existence).

The fact that the low-lying excitation of the ground
state are very similar to the low-lying excitations of the
vacuum (pions, kaons,. . .) allows us to studied small
perturbations around this ground state with the tech-
niques of chiral perturbation theory. This brings about
two advantages. At asymptotic high densities where
perturbative QCD is valid it organizes perturbative cal-
culations that would be very complicated otherwise.
More importantly, it provides a method to systemat-
ically expand around the CFL phase in inverse pow-
ers of the density and/or the gap, which is particularly
useful if the use of perturbative QCD is not legiti-
mate. One of the important perturbations around the
CFL phase is the presence of realistic quark masses.
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In the case of free quarks it is easy to determine the re-
sponse of the system to these masses. As the mass of
the strange quark increases towards its realistic value
its density decreases in such a way that its Fermi en-
ergy equals the Fermi energy of the up quark (plus
the Fermi energy of the electrons) and the weak de-
cays → u+ e− + νe becomes forbidden. Charge neu-
trality is guaranteed by the presence of electrons (we
assume that the neutrinos leave the system). The in-
teracting case may be qualitatively different. If the in-
teractions are such that quarks of different flavors are
paired, the change of flavor caused by flavor changing
decays would result in two unpaired quarks, what is
not energetically favorable. As a result, the system is
rigid against small enough flavor asymmetries. That
is what happens in two-flavor QCD, where up and
down quarks (of two of the three colors) are paired.
An asymmetry in mass or chemical potential between
the flavors causes little change in the ground state if
they are small enough, the small change coming en-
tirely from the unpaired quarks of the third color [12].
One might think that the same effect occurs in the
three-flavor, CFL phase, since there all quarks are
paired with quarks of different flavors. The CFL phase
has, however, a another way of responding to mass
asymmetries that costs little energy but is not avail-
able in the free or two-flavor system: it can condense
mesons carrying strangeness, that are particularly light
[13]. This was demonstrated in [13] on very general
grounds and, in the case of weak coupling, through
explicit computations of the response function to mass
asymmetries. For realistic values of the quark masses
and densities it was found that theK0 is the meson
that condenses and this ground state will be referred to
from now on as the “CFL+K0” phase. For more gen-
eral asymmetries, including asymmetries on chemical
potential present before weak equilibrium is achieved
and/or neutrinos leave the system, a rich phase dia-
grams results, with kaonic, pionic, neutral and charged
condensates forming with different values of the pa-
rameters [19]. The pattern of symmetry breaking
caused by theK0 condensation (in the isospin limit)
is the same one found in the standard electroweak
modelSUI (2) × UY (1) → UQ(1) (I = isospin,Y =
hypercharge andQ = modified electric charge). Due
to the lack of Lorentz symmetry, only two, and not
three, Goldstone bosons are generated, one neutral and
another charged [20,21]. There are stable, supercon-

ducting topological vortices [22,23] and almost sta-
ble non-topological domains walls in the “CFL+K0”
phase [24]. In the CFL phase there is an equal number
of quarks of the three flavors, and the system achieves
electrical neutrality in the absence of any electrons,
making it a perfect insulator [25]. The presence of
the K0 condensate, being neutral, does not change
this situation. Acharged kaon condensate, however,
would change quark matter from a perfect insulator
to a (electrical) superconductor. It is a generic feature
of charged massless scalars that the strong long wave-
length fluctuations of the gauge field lead to conden-
sation of the scalar field (Coleman–Weinberg mecha-
nism [26]). In the CFL+K0 phase there is onealmost
massless charged scalar field. Its mass comes from
isospin breaking contributions coming from the quark
mass difference and electromagnetic mass effects. In
this Letter we consider the competition between the
isospin breaking mass terms and the fluctuations of the
electromagnetic field in order to determine the fate of
the charged kaons and of the possibility of a (electro-
magnetic) superconducting phase in quark matter.

In the absence of quark masses, the symmetry
breaking pattern generated by diquark condensation in
the CFL phase is [6]SUc(3) × SUL(3) × SUR(3) ×
UB(1) × UA(1) → SUc+L+R(3) × Z2. The electro-
magneticUQ(1) is a subgroup of the chiral group
SUL(3) × SUR(3) and the there is a surviving local
UQ̃(1) “electromagnetism” inSUc+L+R(3) that is a
combination of the photon and one of the gluons. The
axialUA(1) is only an approximate symmetry of high
density QCD due to the instanton suppression in the
medium. This symmetry breaking pattern implies the
existence of two singlet Goldstone bosons associated
with the broken baryon number and axial symmetry,
and an octet of pseudoscalars. The singlets will not
play a role in our analysis and will be dropped from
now on. At low (excitation) energies below the gap,
QCD is equivalent to the most general theory of an
octet of pseudoscalars and photons with the same sym-
metries of QCD. This theory has been extensively an-
alyzed [27–31] recently. The leading terms of its La-
grangian are

L= ε

2
�E2 − 1

2
�B2 + f 2

4
Tr

[
D0Σ

†D0Σ − v2∇Σ†∇Σ
]

+ a∆2

8π
Tr

[
M̃

(
Σ +Σ† − 2

)]
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+ bα̃f 2∆2 Tr
[
Σ†,Q

][Q,Σ]
(1)+ cα̃2f 4(Tr

[
Σ†,Q

][Q,Σ])2 + · · · ,
whereµ is the baryon chemical potential,∆ is the gap,

D0Σ = ∂0Σ + i

2µ

[
M2,Σ

] − iẽA0[Q,Σ],

�DΣ = �∇0Σ − iẽ �A[Q,Σ],

ẽ = eg
√

3
/√

3g2 + 4e2

(g = strong coupling constant,e the electron charge),
α̃ = ẽ2/4π , M andQ are the quark mass and charge

matrix, M̃ = M−1 detM andΣ = e
iπA λA√

2f . A few
comments are in order here. The electromagnetic
field in Eq. (1) are the rotated fields that remain
massless in the CFL phase. The low energy constants
f, v, a, b, c, ε can, in principle, be determined from
QCD. In practice, this can be done only in the
asymptotic limit where perturbation theory is valid.
At lower densities one can estimate their values
by looking at their variation with the cutoff of the
effective theory (see below). The dielectric constant
ε was computed in [27] where it was found thatε =
1 + 8

9π
α̃µ2

∆2 . The magnetic permeability was argued
to be unchanged from the vacuum value because the
diquark condensate carries no spin. We will assume
this to be true even outside the perturbative QCD
regime. The values off , v were also determined in
perturbation theory [31] to bev = 1/

√
3 and f =

(21− 8 ln(2))/36π2. After some controversy [29–33]
the value ofa seems to have settled ata = 12/π [32,
33]. Finally, the value of the gap is estimated to be
around 50–100 MeV in phenomenological models at
µ 
 500 MeV and is given in perturbation theory

by ∆ = 512(2/NF )
5/2π4/g5e

− 3π2√
2g [9,10], although

large corrections from higher orders are expected [14–
16]. The coefficient of the term quartic inM in Eq. (1)
is not a free parameter because it is related by an
approximate local symmetry of high density QCD to
the kinetic term [13]. Terms violating this symmetry
(like the other mass term in Eq. (1)) are suppressed by
extra powers of 1/µ. The electromagnetic coefficients
b and c have not yet been computed in perturbation
theory but we will estimate them below. The terms
implied by the dots in Eq. (1) are further suppressed

by powers of momenta or meson masses in units of
the cutoffΛ 
 2∆ or extra powers of̃α.

For values of∆ satisfying

(2)
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the minimum of the potential is found at [13]
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with

(4)cos

(√
2φ

f

)
= amu∆

2µ2

πf 2(ms −md)2(ms +md)
,

describing aK0 condensate (for reasonable values of
the parameters cot

( φ√
2f

)
is nearly one). The upper

limit in Eq. (2) is the maximum value of∆ for K0

condensation and the lower limit marks the onset
of K+ condensation. At very highµ the numerical
value of the range in Eq. (4) is fairly independent
of the chemical potentialµ. Taking the perturbative
QCD values off,a, v and ε, mu = 4 MeV and
ms = 150 MeV this range is(2 MeV)2 < ∆2 <

(120 MeV)2) and thus, most likely, the real world
case will correspond to the “CFL+ K0” phase.
Notice that in the CFL phase the kaons are the
lightest mesons and so are the first to condense
under perturbations. In the isospin limit neutral and
charged kaons are degenerate. The reason for the
neutral kaons to condense are their slightly smaller
mass due to themd − mu quark mass difference
and electromagnetic corrections and the fact that the
presence of a charged kaon condensate implies the
presence of electrons to guarantee charge neutrality,
which raises the energy of this state compared to the
CFL+K0 phase.

This conclusion may be changed by the inclusion
of photon loops and electromagnetic interaction terms
that, by consistence, must be included together. Let
us now compute the one photon loop contribution to
the effective potential and leave the discussion of the
conditions under which it is important for later.

It is convenient to use a modified Landau gauge fix-
ing procedure, that is, we add a term−1/2ξ(∂0A

0 +
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Fig. 1. Graphs giving rise to the one loop effective potential in the
Landau gauge. Solid lines are mesons, wiggly line are photons.

v2∇ �A)2 to the Lagrangian, taking the limitξ → 0.
The price payed by having a complicated propaga-
tor that breaks Lorentz invariance is compensated
by the fact that all zero external momentum one-
loop diagrams involving a meson propagator van-
ish, since the photon propagator satisfies, in this
gauge

(5)

pµV
µνDνλ(p) = 0, V µν = diag

(
1, v2, v2, v2).

The one-loop effective potential is then given by the
sum of diagrams shown in Fig. 1:
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∞∑
n=1

1
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2
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,

where we work inD = 4 + η dimensions andλ is
an arbitrary renormalization scale. The ultraviolet
divergences are absorbed in the terms proportional tob

andc in Eq. (1), which suggests that the natural values
for these (renormalized) constants at the cutoff scale
λ 
 2∆ are

b(λ
 2∆) = b̄

8π

(
2v2

√
ε

+ 1

vε2

)
,

(7)c(λ 
 2∆)= c̄

16

(
2v4

√
ε

+ v

ε2

)
,

whereb̄ andc̄ are numbers of order one.1 In addition
we expect on physical grounds thatb̄ < 0, what
guarantees a positive electromagnetic contribution to
the mass square for the mesons (the photon loop
contribution vanishes in the Landau gauge). This
estimate of the coefficientb agrees with the ones
in [17,18] (where no attempt was made to count
factors of 4π ) and [19] (where no attempt was made
to count factors ofε or v). Other electromagnetic
terms not renormalized at one loop order are assumed
to be suppressed. Also, the contribution from meson
loops is proportional to(mK/f )4 ∼ (∆/µ)4((mu +
md)ms/f )2 and is strongly suppressed. Finally, the
effective potential including the one photon loop
correction becomes

Veff = −a∆2

8π
TrM̃
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Σ +Σ† − 2

)
− f 2

16µ2 Tr
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vε2
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α̃∆2f 2
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+
(

2v4

√
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+ v

ε2

)
α̃2f 4

16

(
Tr

[
Σ†,Q

][Q,Σ])2

1 The values ofb andc are gauge and renormalization prescrip-
tion dependent. We refer here to their values in the Landau gauge
(5) and in the modified minimal subtraction scheme with renormal-
ization scaleλ 
 2∆.
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(8)

×
[
ln

(
v2ẽ2f 2 Tr[Σ†,Q][Q,Σ]

8∆2

)
− c̄ − 3

2

]
.

Whether the electromagnetic corrections computed
above can modify the position of the minimum of the
potential depends on the hierarchy assumed for the
scalesµ, ∆, etc.

It is probably instructive to compare the present sit-
uation with the simpler one of scalar QED. The effec-
tive potential there has the form (omitting numerical
factors) [26]

(9)V = m2φ2 + λφ4 + (
λ2 + α2)φ4

(
αφ2

M2

)
.

In the massless case the minimum of (9) is atφ̄2 =
M2/αe

− 1
2+ λ

α2 . Assumingλ � α2 the term propor-
tional to λ2 can be disregarded and higher loop cor-
rections are under control atφ = φ̄. The presence
of a finite mass term will not destroy this mini-
mum if, atφ = φ̄, it is smaller than the other terms.

This condition translates intom2e
− 1

2+ λ

α2 < αM2. In
our case, we have mass terms of the orderα∆2,
(md − mu)ms∆

2/µ2, andM2 ∼ ∆2. The role of the
self-interaction is played by terms coming from the
electromagnetic mass term (λ ∼ α∆2/µ2), the quark
mass term (λ ∼ (md − mu)ms∆

2/µ4) and the elec-
tromagnetic interaction term (λ ∼ α2). Assumingα ∼
∆2/µ2, (md −mu)ms/µ

2 (or larger) the condition for
the survival of the non-trivial minimum is satisfied up
to numerical factors. Those numerical factors (depend-
ing, among other things, on the low energy constants
b̄ and c̄ ) determine whether the Coleman–Weinberg
mechanism occurs. Thus, let us analyze them more
carefully in two separate situations.

Asymptotic limit

To analyze the simultaneous condensation of neu-
tral and charged kaons we use the parameterization

(10)K0 = φ cosxeiθ1, K+ = φ sinxeiθ2.

Due to charge and hypercharge invariance the poten-
tial does not depend on the phasesθ1 andθ2. Isospin
breaking effects create a dependence onx. The effec-

tive potential (8) becomes

Veff = (md −mu)

(
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s f
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χ2 ln
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with

χ = 2 sin2x

(
cos2 x +

(
1+ cos

(
φ√
2f

))
sin2x

)

and we approximate cos
(√

2φ
f

) 
 0.
Let us now consider the limitµ → ∞. For values of

µ such that

(12)δmms � α̃√
ε
f 2

(but still satisfying the condition forK0 condensation
in Eq. (2), that is violated only around 106 GeV) the
first term in Eq. (11) is smaller than the second one
and can be disregarded. Numerically, condition (12)
is satisfied forµ > 3 GeV. Let us momentarily put
aside the second the term in Eq. (11) (electromagnetic
mass). Minimizing in relation tox we find a solution

(13)x 
 ∆e
c̄
2+ 3

4

vef
.

At this value ofx, the electromagnetic mass term
can be disregarded compared to the one we kept if

(14)−4b̄e−(c+ 3
2 ) � 1.

For many, but not all, natural values ofb̄ and c̄

this condition is satisfied and the solution in Eq. (13)
can be trusted. Unfortunately, the asymptotic values
of these parameters in the limitµ → ∞ are not
known (the computation of̄c involves the calcula-
tion of four-loops diagrams) and we cannot determine
whether (14). In Fig. 2 we show, as an example, the ef-
fective potential for a natural choice of parameter val-
ues and very high value of the chemical potential (µ =
10 GeV,mu = 4 MeV,md = 7 MeV,ms = 150 MeV,
b̄ = −1.3, c̄ = 0.3). It shows the characteristic shape
of a potential with a first order phase transition.



142 P.F. Bedaque / Physics Letters B 524 (2002) 137–143

Fig. 2. Effective potential as a function ofx = tan(|K+|/|K0|)
(µ = 10 GeV, b̄ = −1.3, c̄ = 0.3, and leading perturbative results
for the remaining parameters). The dashed line shows the effective
potential without the electromagnetic contribution.

“Realistic” densities

For µ < 3 GeV the quark mass terms are no
longer negligible compared to the electromagnetic
mass terms. In fact, for the densities that may be found
in neutron star cores (µ 
 500 MeV) it is the dominant
mass term for the charged kaons and the one loop ef-
fects are too small to overcome it for most values of
the parameters. However, at lower densities the val-
ues of the low energy constants are not so well de-
termined since the perturbative results do not apply.
Some choices for the values of these low energy con-
stants that do not violate the expectations of dimen-
sional analysis result in charged kaon condensation.
As an example, we show in Fig. 3 the effective poten-
tial for two choices of the parameters.

In both of them the value of the decay constantf

was changed from the value suggested from perturba-
tion theory (f → 0.6µ= 3fpert) and used[b̄] = −0.5.
The two solid curves correspond toc̄ = 2.5 andc̄ =
1.5. This change in̄c is enough to transform the global
minimum into a local minimum. This set of parame-
ters were carefully chosen for most of the parameter
space the quark mass term overwhelms the others and
there is no charged kaon condensation.

A better idea of the likelihood of charged kaon con-
densation at these densities can be perhaps obtained
through the use of QCD models to estimate the un-
known low energy constants in the density range inac-
cessible to perturbation theory.

Fig. 3. Effective potential as a function ofx = tan(|K+|/|K0|)
(µ = 500 MeV, ∆ = 50 MeV, f = 3fpert, b̄ = −0.5, c̄ = 2.5
(lower curve) and 1.5 (upper curve) and leading perturbative results
for the remaining parameters). The dashed line shows the effective
potential without the electromagnetic contribution.

We have considered the possibility of charged kaon
condensation and (electromagnetic) superconductiv-
ity at high density quark matter. At asymptotically
high densities, where perturbative QCD applies and
the question can be decided on first principles, a com-
plicated computation of some low energy constants are
necessary to settle the issue. We find, however, that for
most natural values of these constants charged kaon
condensation indeed occurs. At lower densities the sit-
uation is the opposite. For most reasonable values of
the low energy constants the quark mass effects over-
whelm the electromagnetic effects and there is noK+
condensation.
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